2015학년도 11월 고2 전국연합학력평가 정답 및 해설

• 2교시 수학 영역 •

[나 형]

1	4	2	1	3	3	4	2	5	5
6	4	7	2	8	5	9	3	10	4
11	1	12	1	13	5	14	2	15	1
16	4	17	(5)	18	3	19	3	20	3
21	2	22	45	23	15	24	20	25	9
26	8	27	216	28	26	29	300	30	30

1. [출제의도] 집합의 연산을 활용하여 계산하기

 $A \cup B = \{1, 2, 3, 4\}$ 이므로 모든 원소의 합은 10

- 2. [출제의도] 로그의 성질을 활용하여 계산하기 $\log_6 2 + \log_6 3 = \log_6 6 = 1$
- 3. [가형 2번과 동일]
- 4. [출제의도] 등비중항 이해하기

 $a_2 \times a_4 = (a_3)^2 = 64$ 모든 항이 양수이므로 $a_3 = 8$

5. [출제의도] 유리함수의 그래프 이해하기

유리함수 $f(x) = \frac{1}{x+2} + a$ 의 그래프의 점근선의 방정식은 x=-2, y=3이므로 a = 3, b = -2 $\therefore a-b=5$

6. [출제의도] 부정적분 이해하기

$$f(x) = \int (2x+5)dx$$

= $x^2 + 5x + C$ (단, C는 적분상수)
 $f(0) = C = 1$
 $\therefore f(x) = x^2 + 5x + 1$
따라서 $f(2) = 15$

7. [출제의도] 명제의 대우 이해하기

주어진 명제가 참이므로 대우 명제 x = 3이면 $x^2 - ax + 9 = 0$ 이다.'가 참이다. $\therefore 9-3a+9=0$ 따라서 a=6

8. [출제의도] 등비급수의 수렴과 발산 이해하기

등비급수
$$\sum_{n=1}^{\infty} \left(\frac{x-4}{3}\right)^n$$
이 수렴하려면 $-1 < \frac{x-4}{3} < 1$ $\therefore 1 < x < 7$ 1 $< x < 7$ 은 마존시키는 저수 $x \vdash 2$ 3

1 < x < 7을 만족시키는 정수 x는 2, 3, 4, 5, 6따라서 정수 x의 개수는 5

9. [출제의도] 도함수를 활용하여 문제해결하기

점 P의 시각 t에서의 위치 x가 $x = t^3 - 4t^2 - 3t + 4$ 일 때 시각 t에서 점 P의 속도를 v라 하면 $v = \frac{dx}{dt} = 3t^2 - 8t - 3$

점 P가 출발 후 운동 방향을 바꾸는 순간의 속도는 0이므로

 $3t^2 - 8t - 3 = 0$ (3t+1)(t-3)=0따라서 t=3 (::t>0)

10. [출제의도] 미분계수 이해하기

$$f'(x) = 4x + 5$$

$$\lim_{h \to 0} \frac{f(4+h) - f(4)}{3h} = \frac{1}{3}f'(4) = 7$$

11. [출제의도] 수열의 합 이해하기

첫째항이 1이고 공비가 2인 등비수열 $\{a_n\}$ 의 일반항 $a_n = 2^{n-1}$ 이다.

$$a_{2k-1}=2^{2k-2}=4^{k-1}$$
이므로 $\sum_{k=1}^5 a_{2k-1}=\sum_{k=1}^5 4^{k-1}=rac{1 imes \left(4^5-1
ight)}{4-1}=341$

12. [출제의도] 지수를 활용하여 문제해결하기

두 비행기 A, B의 필요마력을 각각 P_{A} , P_{B} 날개의 넓이를 각각 S_A , S_B 라 하자.

$$\begin{split} P_A &= \frac{1}{150} kC \big(\, V_A \big)^3 S_A \circ \big| \, \Im, \; S_B = 3 S_A \circ \big| \, \square \, \Xi \\ P_B &= \frac{1}{150} kC \big(\, V_B \big)^3 S_B = \frac{1}{150} kC \big(\, V_B \big)^3 \big(3 S_A \big) \\ P_B &= \sqrt{3} \, P_A \circ \big| \, \square \, \Xi \\ \frac{P_A}{P_B} &= \frac{1}{\sqrt{3}} = \frac{ \big(\, V_A \big)^3 S_A }{ \big(\, V_B \big)^3 \big(3 S_A \big)} = \frac{1}{3} \bigg(\frac{V_A}{V_B} \bigg)^3 \\ & \therefore \, \left(\frac{V_A}{V_B} \right)^3 = 3^{\frac{1}{2}} \end{split}$$
 따라서 $\frac{V_A}{V_B} = 3^{\frac{1}{6}}$

13. [출제의도] 합성함수 이해하기

 $(f \circ f)(1) = f(f(1)) = f(2) = 3$

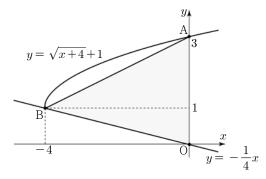
14. [출제의도] 함수의 극한 이해하기

 $\lim f(x) = 3$ 1-x=t라 하면 $\lim_{x \to 2^{-}} f(1-x) = \lim_{t \to -1^{+}} f(t) = -1$ 따라서 $\lim_{x \to \infty} f(x)f(1-x) = 3 \times (-1) = -3$

15. [출제의도] 무리함수의 그래프를 활용하여 문제해결하기

그림과 같이 함수 $y = \sqrt{x+4} + 1$ 의 그래프는 함수 $y = \sqrt{x}$ 의 그래프를 x축의 방향으로 -4만큼, y축의 방향으로 1만큼 평행이동한 것이고 두 점 A(0,3), B(-4,1)을 지난다.

직선 $y = -\frac{1}{4}x$ 는 원점 O와 점 B를 지난다.



 $\therefore \triangle OAB = \frac{1}{2} \times 3 \times 4 = 6$

16. [출제의도] 수학적 귀납법을 활용하여 추론하기

(1) n = 2일 때, (*)에서

(좌변)=
$$a_1 + \frac{1}{1} + \frac{1}{2} = 1 + \frac{1}{1} + \frac{1}{2} = \boxed{\frac{5}{2}}$$

(우변)= $2a_2 = 2 \times \left(1 + \frac{1}{4}\right) = \boxed{\frac{5}{2}}$
(좌변)=(우변)이므로 (*)이 성립한다.

- (2) n=m $(m \geq 2)$ 일 때, (*)이 성립한다고 가정하면 $a_1 + a_2 + a_3 + \cdots + a_{m-1} + \sum_{i=1}^{m} \frac{1}{i} = ma_m$ n = m + 1일 때, (*)이 성립함을 보이자. $a_1 + a_2 + a_3 + \cdots + a_m + \sum_{i=1}^{m+1} \frac{1}{i}$ $= a_1 + a_2 + \cdots + a_{m-1} + a_m + \sum_{i=1}^m \frac{1}{i} + \frac{1}{m+1}$ $= ma_m + a_m + \frac{1}{m+1}$

 $= \boxed{(m+1)} \times a_m + \frac{1}{m+1}$ $=(m+1)\Big\{a_{m+1}-\frac{1}{(m+1)^2}\Big\}+\frac{1}{m+1}$

따라서 n=m+1일 때도 (*)이 성립한다.

(1), (2)에 의하여

 $n \geq 2$ 인 모든 자연수 n에 대하여 (*)이 성립한다.

 $p = \frac{5}{2}, f(m) = m + 1$ 따라서 $p \times f(3) = 10$

17. [출제의도] 필요조건과 충분조건을 활용하여 추론하기

 $\neg . p : a^2 + b^2 = 0 \iff a = 0, b = 0$ q: a = b:. p는 q이기 위한 충분조건이다. (참) ㄴ. $p:ab < 0 \Leftrightarrow (a>0, b<0)$ 또는

(a < 0, b > 0)q:a<0 또는 b<0 \Leftrightarrow (a>0, b<0) 또는

(a < 0, b > 0) 또는 (a < 0, b < 0)p는 q이기 위한 충분조건이다. (참)

 $\Box p : a^3 - b^3 = (a - b)(a^2 + ab + b^2) = 0$ \Rightarrow a-b=0 또는 $a^2+ab+b^2=0$ a = b

 $q: a^2-b^2=(a+b)(a-b)=0$ 이므로 a=b 또는 a=-b

∴ p는 q이기 위한 충분조건이다. (참) 따라서 옳은 것은 기, ㄴ, ㄷ

18. [출제의도] 수열의 극한을 활용하여 문제해결하기

원 $x^2+y^2=n^2$ 과 곡선 $y=\sqrt{x+n}$ 이 만나는 두 점은 (-n,0), $(n-1,\sqrt{2n-1})$ 이므로

두 점 사이의 거리 $a_n = \sqrt{4n^2 - 2n}$ 이고 원의 지름의 길이 $b_n = 2n$ 이다.

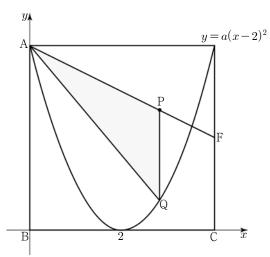
$$\begin{split} & \therefore & \lim_{n \to \infty} (b_n - a_n) \\ & = \lim_{n \to \infty} \left(2n - \sqrt{4n^2 - 2n} \right) \\ & = \lim_{n \to \infty} \frac{\left(2n - \sqrt{4n^2 - 2n} \right) \left(2n + \sqrt{4n^2 - 2n} \right)}{2n + \sqrt{4n^2 - 2n}} \\ & = \lim_{n \to \infty} \frac{2n}{2n + \sqrt{4n^2 - 2n}} \\ & = \lim_{n \to \infty} \frac{2}{2 + \sqrt{4 - \frac{2}{n}}} = \frac{1}{2} \end{split}$$

19. [출제의도] 역함수를 활용하여 문제해결하기

20. [가형 18번과 동일]

21. [출제의도] 도함수를 활용하여 문제해결하기

주어진 그림을 꼭짓점 B를 원점으로, 직선 BC를 x축, 직선 BA를 y축으로 하는 좌표평면 위에 나타내면 다음과 같다.



직선 AF의 방정식은 $y = -\frac{1}{2}x + 4$

포물선 $y=a(x-2)^2$ (a>0)은 점 $\mathrm{A}\,(\,0,\,4)$ 를 지나므로 $4=a\times(0-2)^2,\;a=1$

포물선 $y = (x-2)^2$ 과 직선 $y = -\frac{1}{2}x + 4$ 가

만나는 점의 x의 좌표는 $x=0, x=\frac{7}{2}$

점 P의 x좌표를 $t\left(0 < t < \frac{7}{2}\right)$ 라 하면

점 $P(t, -\frac{1}{2}t+4)$, 점 $Q(t, (t-2)^2)$ 이고

삼각형 AQP의 넓이를 S(t)라 하면

 $S(t) = \frac{1}{2} \times t \times \left\{ -\frac{1}{2}t + 4 - (t-2)^2 \right\} = -\frac{1}{4} (2t^3 - 7t^2)$

 $S'(t) = -\frac{1}{4}(6t^2 - 14t) = -\frac{1}{2}t(3t - 7)$

S'(t) = 0에서 t = 0 또는 $t = \frac{7}{3}$

S(t)의 증가와 감소를 표로 나타내면 다음과 같다.

t	t (0)		$\frac{7}{3}$		$\left(\frac{7}{2}\right)$
S'(t)		+	0	_	
S(t)		1	$S\left(\frac{7}{3}\right)$	7	

따라서 S(t)는 $t=\frac{7}{3}$ 에서 극대이면서 최대이므로 S(t)의 최댓값은

$$-\frac{1}{4} \times \left\{ 2 \times \left(\frac{7}{3}\right)^3 - 7 \times \left(\frac{7}{3}\right)^2 \right\} = \frac{343}{108}$$

22. [가형 22번과 동일]

23. [출제의도] 수열의 합 이해하기

$$a_5 = S_5 - S_4 = 55 - 40 = 15$$

24. [출제의도] 함수의 극한 이해하기

$$\lim_{x \to 2} \frac{x^2 + x - 6}{\sqrt{x + 2} - 2} = \lim_{x \to 2} \frac{\left(x^2 + x - 6\right)\left(\sqrt{x + 2} + 2\right)}{\left(\sqrt{x + 2} - 2\right)\left(\sqrt{x + 2} + 2\right)}$$
$$= \lim_{x \to 2} \frac{(x - 2)(x + 3)\left(\sqrt{x + 2} + 2\right)}{x - 2}$$
$$= (2 + 3)\left(\sqrt{2 + 2} + 2\right)$$
$$= 20$$

25. [가형 25번과 동일]

26. [출제의도] 집합의 개념 이해하기

X={2,3,4,5,6,7,8,9,a+1,a+3,a+5}이므로 n(X)=10이 되기 위해서는 (a+3<2,a+5≥2) 또는 (a+1≤9,a+3>9) ∴ -3≤a<-1 또는 6<a≤8 그러므로 자연수 a는 7,8 따라서 자연수 a의 최댓값은 8

27. [출제의도] 지수법칙 이해하기

 $2^a = 3^b$ 에서 양변에 2^b 을 곱하면 $2^a \times 2^b = 3^b \times 2^b$ $2^{a+b} = 6^b$ $a+b=\frac{4}{3}ab$ 이므로 $2^{\frac{4}{3}ab} = 6^b$ $2^{\frac{4}{3}a} = 6$, $2^a = 6^{\frac{3}{4}}$

$$8^a \times 3^b = (2^a)^3 \times 2^a = (2^a)^4 = 216$$

28. [출제의도] 등차수열을 활용하여 문제해결하기

주어진 이차방정식의 서로 다른 두 실근을 α_n , β_n 이라 하면 근과 계수의 관계에 의하여 $\alpha_n+\beta_n=a_n+a_{n+2}=2a_{n+1}$, $\alpha_n\beta_n=-a_{n+1}$

$$\begin{aligned} &\alpha_n + \beta_n = a_n + a_{n+2} = 2a_{n+1} \ , \ \alpha_n \beta_n = -a_{n+1} \\ &\sum_{n=1}^{10} (\alpha_n + 1) (\beta_n + 1) = \sum_{n=1}^{10} (\alpha_n \beta_n + \alpha_n + \beta_n + 1) \end{aligned}$$

$$= \sum_{n=1}^{\infty} \left(-a_{n+1} + 2a_{n+1} + 1 \right)$$

$$= \sum_{n=1}^{10} (a_{n+1} + 1) = 180$$

∴ a₂ + a₃ + a₄ + ··· + a₁₁ + 10 = 180 ····· ①
 □의 양변에 a₁을 더하면

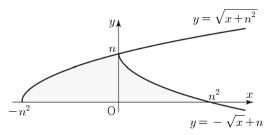
 $a_1 + a_2 + a_3 + a_4 + \dots + a_{11} + 10 = a_1 + 180$

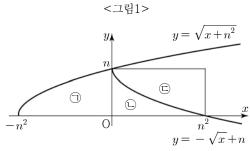
$$\frac{11 \times (a_1 + a_{11})}{2} = \frac{11 \times (6 + a_{11})}{2} = 6 + 170$$

$$\therefore a_{11} = 26$$

29. [출제의도] 수열의 합 추론하기

함수 $y=\sqrt{x+n^2}$ 의 그래프는 함수 $y=\sqrt{x}$ 의 그래프를 x축의 방향으로 $-n^2$ 만큼 평행이동한 것이고, 함수 $y=-\sqrt{x}+n$ 의 그래프는 함수 $y=-\sqrt{x}$ 의 그래프를 y축의 방향으로 n만큼 평행이동한 것이므로두 함수의 그래프와 x축으로 둘러싸인 영역의 내부 또는 그 경계는 <그림1>과 같다.





이 때, 함수 $y = -\sqrt{x} + n$ 의 그래프는

함수 $y=\sqrt{x+n^2}$ 의 그래프를 x축에 대하여 대칭이동한 후 x축의 방향으로 n^2 만큼, y축의 방향으로 n만큼 평행이동한 것이므로 <그림2>와 같이

<그림2>

함수 $y=\sqrt{x+n^2}$ 의 그래프와 x축, y축으로 둘러싸인 영역 ①의 x좌표와 y좌표가 모두 정수인 점의 개수는 함수 $y=-\sqrt{x}+n$ 의 그래프와 두 직선 $x=n^2$, y=n으로 둘러싸인 영역 ⓒ의 x좌표와 y좌표가 모두 정수인 점의 개수와 같다.

그러므로 영역 ①과 영역 ①의 x좌표와 y좌표가 모두 정수인 점의 개수는 영역 ①과 영역 ©의 x좌표와 y좌표가 모두 정수인 점의 개수와 같다.

x축 위의 정수인 점은 $0, 1, \cdots, n^2$ 이므로 (n^2+1) 개 y축 위의 정수인 점은 $0, 1, \cdots, n$ 이므로 (n+1)개 $\therefore a_n = (n^2+1)(n+1) = n^3 + n^2 + n + 1$

$$\begin{split} \sum_{n=1}^{5} a_n &= \sum_{n=1}^{5} \left(n^3 + n^2 + n + 1 \right) \\ &= \left(\frac{5 \times 6}{2} \right)^2 + \left(\frac{5 \times 6 \times 11}{6} \right) + \left(\frac{5 \times 6}{2} \right) + 5 \\ &= 300 \end{split}$$

[다른 풀이]

<그림1>에서 y의 값에 대한 점의 개수는 아래의 표와 같다.

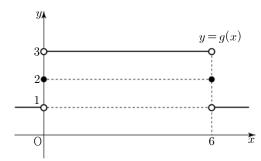
n	y = 0	y = 1	y=2	y = 3	y = 4	y = 5	합
1	3	1					4
2	9	5	1				15
3	19	13	7	1			40
4	33	25	17	9	1		85
5	51	41	31	21	11	1	156

$$\sum_{n=1}^{5} a_n = 4 + 15 + 40 + 85 + 156 = 300$$

30. [출제의도] 도함수를 활용하여 문제해결하기

(7)에서 함수 g(x)가 x = 0, x = 6에서 불연속이므로

함수 f(x)의 극솟값은 0, 극댓값은 6이고 함수 g(x)의 그래프는 다음과 같다.

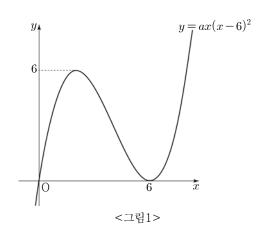


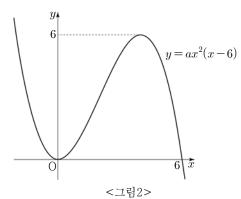
(나)에서 함수 f(x)g(x)는

$$f(x)g(x) = \begin{cases} f(x) & (x < 0, x > 6) \\ 2f(x) & (x = 0, x = 6) \\ 3f(x) & (0 < x < 6) \end{cases}$$

함수 f(x)g(x)는 모든 실수에서 연속이므로 $\lim_{x\to 0} f(x)g(x) = f(0)g(0), \ \lim_{x\to 6} f(x)g(x) = f(6)g(6)$

그러므로 f(0)=0, f(6)=0이다. 따라서 함수 f(x)의 그래프의 개형은 <그림1> 또는 <그림2> 중 하나이다.





이때 (다)에서 f(5)f(7) < 0이므로

함수 f(x)의 그래프는 <그림2>와 같다.

 $\therefore f(x) = ax^2(x-6)$

f'(x)=3ax(x-4)=0에서 x=0 또는 x=4이므로 함수 f(x)는 x = 4에서 극댓값을 갖는다.

$$f(4) = -32a = 6, \ a = -\frac{3}{16}$$

$$\therefore \ f(x) = -\frac{3}{16}x^2(x-6)$$

$$f(x) = -\frac{3}{16}x^2(x-6)$$

따라서 $f(-4) = -\frac{3}{16} \times (-4)^2 \times (-4-6) = 30$