
제 4 교시

과학탐구 영역(생명 과학 II)

수험 번호 성명

제[]선택

1. 그림은 원심 분리기를 이용하여 식물 세포 파쇄액으로부터 세포 소기관 ①~C)을 분리하는 과정을 나타낸 것이다. ①~C)은 미토콘드리아, 엽록체, 핵을 순서 없이 나타낸 것이다.

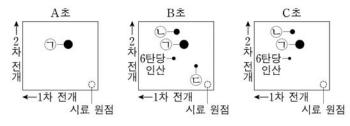
이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

- ㄱ. ૽ 은 2중막을 갖는다.
- ㄴ. 이 과정은 자기 방사법이다.
- ㄷ. @에는 크리스타 구조를 갖는 세포 소기관이 있다.
- ① ¬
- 2. 다음은 세포 ①~ⓒ에 대한 자료이다. ①~ⓒ은 대장균, 사람의 간세포, 시금치의 공변세포를 순서 없이 나타낸 것이다.
 - ⑦라 ①은 모두 세포벽을 갖는다.
 - ¬과 □은 모두 핵막을 갖는다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

---<보 기>--

- ㄱ. ⑦은 사람의 간세포이다.
- L. L의 세포벽에는 펩티도글리칸 성분이 있다.
- C. O과 C은 모두 원핵 세포이다.
- ① ¬ (2) L
- ③ ⊏
- (4) 7, L (5) L, L
- 3. 표는 세포막을 통한 물질의 이동 방식 Ⅰ~Ⅲ의 예를 나타낸 것이다. I~Ⅲ은 능동 수송, 단순 확산, 세포외 배출(외포 작용)을 순서 없이 나타낸 것이다.


이동 방식	예
I	세포 안에서 세포 밖으로의 인슐린 이동
П	Na ⁺ -K ⁺ 펌프를 통한 Na ⁺ 이동
Ш	폐포에서 모세 혈관으로의 ${ m O_2}$ 이동

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

----<보 기>--

- ¬. I은 세포외 배출(외포 작용)이다.
- ㄴ. 틸라코이드 내부의 H⁺이 ATP 합성 효소를 통해 스트로마로 이동하는 방식은 Ⅱ이다.
- ㄷ. Ⅲ에서 막 단백질이 이용된다.

4. 그림은 클로렐라 배양액에 ${}^{14}\text{CO}_2$ 를 공급하고 빛을 비춘 후, 세 시점에서 얻은 세포 추출물을 각각 크로마토그래피법으로 전개한 결과를 순서 없이 나타낸 것이다. ①~ C)은 각각 G3P, RuBP, 3PG(PGA) 중 하나이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

--<보 기>-

- ㄱ. 엽록체의 스트로마에 つ이 있다.
- L. 1 분자당 탄소 수는 (L)이 (C)보다 크다.
- □. ¬~□ 중 ¹⁴C가 포함된 최초 생성물은 □이다.
- ① ¬ ② L ③ □ 4) 7, 6 5 7, 6
- 5. 진화의 요인 중 창시자 효과에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

----<보 기>-

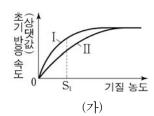
- □. 유전적 부동의 한 현상이다.
- ㄴ. 유전자풀의 변화 요인 중 하나이다.
- C. DNA 변화에 의해 집단 내에 존재하지 않던 새로운 대립 유전자를 제공한다.

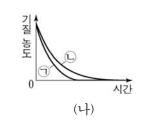
- 6. 그림 (7)는 에이버리가, (4)는 허시와 체이스가 수행한 실험의 일부를 나타낸 것이다. ①은 단백질 분해 효소와 DNA 분해 효소 중 하나이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

----<보 기>--

- ㄱ. ⑦은 단백질 분해 효소이다.
- ㄴ. @에 ³²P로 표지된 DNA가 있다.
- 다. (가)에서 살아 있는 R 형균은 피막(협막)을 갖는다.


생 명


I

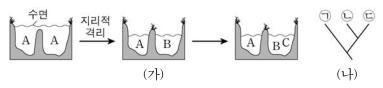
2 (생명 과학Ⅱ)

과학탐구 영역

7. 그림 (가)는 효소 E에 의한 반응에서 조건 I과 Ⅱ일 때 기질 농도에 따른 초기 반응 속도를 나타낸 것이고, I과 Ⅱ는 각각 저해제 X가 있을 때와 없을 때 중 하나이다. 그림 (나)는 (가)의 I과 Ⅱ에서 기질 농도가 S₁일 때 시간에 따른 기질 농도를 나타낸 것이고, ¬과 ○은 각각 I과 Ⅱ 중 하나이다. X는 경쟁적 저해제와 비경쟁적 저해제 중 하나이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 조건 이외의 다른 조건은 동일하다.) [3점]

- ¬. X는 경쟁적 저해제이다.
- ㄴ. (L)은 I이다.
- □. (가)에서 S₁일 때 기질과 결합하지 않은 E의 수 는 Ⅱ에서가 I에서보다 크다.
- ① ¬
- ② L


- 8. 표는 동물 (가)~(라)에서 특징 A~C의 유무를 나타낸 것이다. (가)~(라)는 갯지렁이, 거미, 해파리, 회충을 순서 없이 나타낸 것이며, A~C는 외골격, 체강, 체절을 순서 없이 나타낸 것이다.

특징 동물	A	В	С
(フト)	0	0	×
(나)	?	0	×
(다) (라)	7	0	0
(라)	×	×	?
	(이: 있	음, ×:	없음)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

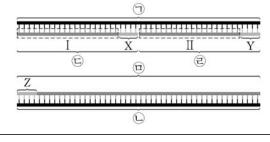
- ㄱ. ㈜은 '○'이다.
- ㄴ. (나)는 발생 과정에서 원구가 항문이 된다.
- ㄷ. (라)는 중배엽을 갖는다.
- \bigcirc
- ② L
- 3 = 4 7, = 5 7, =
- 9. 그림 (가)는 종 분화 과정을 통해 종 A가 종 B로, 종 B가 종 C로 분화하는 과정을, (나)는 (가)를 토대로 작성한 A~C의 계통수를 나타낸 것이다. A~C는 서로 다른 생물학적 종이고, ⑦~C은 A~C를 순서 없이 나타낸 것이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 지리적 격리는 1회 일어났고, 이입과 이출은 없다.) [3점]

-----<보 기>---

- ¬. A는 C와 생식적으로 격리되어 있다.
- ㄴ. ⑦은 C이다.
- ㄷ. ②과 ⑤ 사이의 종 분화는 이소적 종 분화에 의해 일어났다.
- ① ¬
- ② L
- ③ ⊏
- 4) 7, L (5) 7, C

- 10. 다음은 광합성에 대한 힐의 실험이다.
 - 옥살산철(Ⅲ)은 비순환적 광인산화 경로를 따라 이동하는 전자를 받을 수 있는 전자 수용체이다.


[실험 과정 및 결과]

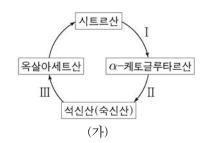
- (가) 질경이의 잎에서 얻은 엽록체 추출액과 ¬옥살산철(Ⅲ)을 시험관에 넣고 일정 시간 암실에 둔다.
- (나) (가)의 시험관 안에 있는 공기를 빼낸 다음 밀봉한다.
- (다) (나)의 시험관에 빛을 비추었더니 옥살산철(Ⅲ)이 옥살산철(Ⅱ)로 환원되었고, O₂가 발생하였다.

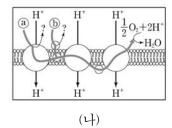
이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

---<보 기>---

- ㄱ. 광합성의 명반응에서 ⊙과 같은 역할을 하는 물질은 NADPH이다.
- ㄴ. (다)에서 H₂O가 광분해되었다.
- \Box . (다)에서 발생한 O_2 는 광계 I에서 생성되었다.
- ① 7 ② L
- 3 = 4 7, = 5 = =
- 11. 다음은 어떤 세포에서 복제 중인 2중 가닥 DNA의 일부에 대한 자료이다.
 - 2중 가닥 DNA (가)는 서로 상보적인 복제 주형 가닥 ⑤과 ○으로 구성되어 있으며, ⓒ, ②, ②은 새로 합성된 가닥이다.
 - ᄀ, ℂ, ٰ □은 각각 48 개의 염기로 구성되고, Ĉ라 ㄹ은 각각 24 개의 염기로 구성된다.
 - 프라이머 X, Y, Z는 각각 4개의 염기로 구성된다. Z는 피리미딘 계열에 속하는 2종류의 염기로 구성되고, X와 Y 중 하나와 서로 상보적이다.
 - ¬과 ▷ 사이의 염기 간 수소 결합의 총개수는 56 개이다.
 - \circ I에서 $\frac{A+T}{G+C}=3$ 이고, ②에서 $\frac{A+T}{G+C}=\frac{3}{2}$ 이다.
 - \circ (가)에서 $\frac{A+@}{G+(b)}=2$ 이고, ①에서 $\frac{@}{A}=\frac{9}{7},\frac{@}{G}=\frac{3}{5}$ 이다.
 - ⓐ와 ⓑ는 사이토신(C)과 티민(T)을 순서 없이 나타낸 것이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 돌연변이는 고려하지 않는다.) [3점]


----<보 기>---


- ¬. X에 있는 유라실(U)의 개수는 1 개이다.
- ㄴ. 염기 간 수소 결합의 총개수는 □과 Ⅱ 사이가 □과 Ⅰ 사이 보다 많다.
- ㄷ. ⑪에서 퓨린 계열 염기의 개수 = 2이다.
- ① ¬

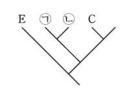
과학탐구 영역

생명 과학 Ⅱ

12. 그림 (가)는 세포 호흡이 일어나고 있는 어떤 미토콘드리아의 TCA 회로 일부를, (나)는 이 미토콘드리아의 전자 전달계를 나타낸 것이다. @와 b는 각각 NADH와 FADH, 중 하나이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

- ㄱ. 과정 Ⅰ과 Ⅱ에서 모두 ⓐ가 생성된다.
- ㄴ. 과정 Ⅲ에서 기질 수준 인산화가 일어난다.
- C. (나)에서 @ 1 분자와 ⓑ 1 분자로부터 각각 전자 전달계로 전달되는 전자의 개수는 같다.
- \bigcirc
- (2) L
- ③ ⊏
- 47, 67, 6
- 13. 그림은 ¬과 ○에서 발효가 일어날 때 물질 A가 B와 C로 전환 되는 과정을 나타낸 것이다. ①과 ①은 사람의 근육 세포와 효모를 순서 없이 나타낸 것이고, A~C는 에탄올, 젖산, 피루브산을 순서 없이 나타낸 것이다. 1분자당 탄소 수는 A와 B가 같다.



이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

- ㄱ. ⑦은 사람의 근육 세포이다.
- ㄴ. 과정 I 에서 NAD⁺가 환원된다.
- ㄷ. 과정 Ⅱ에서 탈탄산 반응이 일어난다.
- ① L
- ② □

- 37, 47, 57, 4, 5
- 14. 표는 6종의 동물 A~F의 학명과 분류 단계를, 그림은 A~F 중 5종의 유연관계를 계통수로 나타낸 것이다. A~F는 2개 목, 3개 과로 분류된다.

종	학명	목명	과명
Α	Equus caballus	?	말과
В	Bos taurus	소목	?
С	Rhinoceros unicornis	?	코뿔소과
D	Equus asinus	말목	?
Е	Neotragus pygmaeus	?	소과
F	Diceros bicornis	?	?

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

-----<보 기>--

- ㄱ. ૽과 ઃ은 같은 속에 속한다.
- L. F는 코뿔소과에 속한다.
- C. C와 B의 유연관계는 C와 D의 유연관계보다 가깝다.

- 15. 다음은 어떤 동물의 초기 발생 중의 세포 분화에 대한 자료이다.
 - 유전자 *a*, *b*, *c*는 각각 전사 인자 A, B, C를 암호화한다.
 - 초기 발생 중 미분화 세포가 이자 세포로 분화하기 위해서는 A와 B가, 망막 세포로 분화하기 위해서는 A와 C가, 뇌세포로 분화하기 위해서는 B와 C가 필요하다.
 - 표는 야생형과 돌연변이 I~Ⅲ에서 이자 세포, 망막 세포,
 - 뇌세포의 형성 여부를 나타낸 것 이다. I은 유전자 $a \sim c$ 중 어느 하나가, Ⅱ는 나머지 두 유전자 중 어느 하나만, Ⅲ은 그 나머지 하나가 결실된 돌연변이이다.

구분	이자 세포	망막 세포	뇌세포
야생형	0	0	0
I	×	?	×
П	×	9	0
Ш	0	×	×
(O: 형성됨, ×: 형성 안 됨)			

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 돌연변이 이외의 돌연변이는 고려하지 않는다.) [3점]

-----<보 기>--

- ㄱ. ⑦은 '×'이다.
- L. I은 b가 결실된 돌연변이이다.
- 다. 야생형의 이자 세포에는 b와 c가 모두 있다.
- \bigcirc
- ② ⊏
- 37, 4 4 4, 5 7, 4, 5
- **16.** 다음은 2중 가닥 DNA x를 이용한 중합 효소 연쇄 반응(PCR) 실험이다.
 - o x는 42 개의 염기쌍으로 구성되고, 염기 서열은 다음과 같다.
 - 5'-GTCATGAGTGACTTGAGTCAATCGATGCTATGTCTAAGTCCT-3' 3'-CAGTACTCACTGAACTCAGTTAGCTACGATACAGATTCAGGA-5'
 - 프라이머 ②의 염기 서열은 AGTCAA이고, 표는 프라이머 b~d의 특징을 나타낸 것이다.

프라이머	염기 개수	프라이머와 <i>x</i> 의 주형 가닥 사이의 수소 결합 총개수	퓨린 계열 염기 개수
(b)	?	16	5
c	?	15	9
<u>d</u>	7	17	3

[실험 과정 및 결과]

- (가) x와 PCR에 필요한 물질이 충분히 담긴 시험관 I~Ⅲ에 표와 같이 프라이머를 넣은 후, DNA 변성(열처리), 프라이머 결합, DNA 합성의 세 과정을 30회 반복한다.
- (나) I~Ⅲ에서 모두 2중 가닥 DNA 조각이 증폭되었으며, 증폭된 DNA 조각의 특징은 표와 같다. ①은 30보다 크다.

시험과	프라이머	20	증폭된 DNA 조각	
시임신		염기쌍 개수	염기 간 수소 결합 총개수	
I	(a), (b)	?	?	
П	(b), (c)	30	73	
Ш	©, d	Ĺ)	Œ	

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, PCR의 각 단계는 정상적으로 진행되었다.)

- ¬. ⓑ의 3' 말단 염기는 티민(T)이다.
- ㄴ. ①은 5이다.
- ㄷ. 🗀은 80 이다.

4 (생명 과학Ⅱ)

과학탐구 영역

- 17. 다음은 어떤 진핵생물의 유전자 x와, x에서 돌연변이가 일어난 유전자 y, z의 발현에 대한 자료이다.
 - x, v, z로부터 각각 폴리펩타이드 X, Y, Z가 합성되고, X, Y, Z의 합성은 모두 개시 코돈에서 시작하여 종결 코돈에서 끝난다. 개시 코돈은 AUG이다.
 - X는 9개의 아미노산으로 구성 되며, 아미노산 서열이 ②-(가) -(나)-(다) 순서로 연결된 폴리 펩타이드이다. 표의 ①~C)은 (가)~(다)를 순서 없이 나타낸 것이다.

구분	아미노산 서열
Ī	류신-발린
Ĺ)	발린-글루타민-트립토판
Œ	라이신-류신
2	메싸이오닌-알라닌

○ y는 x의 전사 주형 가닥에서 연속된 2개의 염기가 1회 결실되고, 다른 위치에서 @ 연속된 2개의 염기가 1회 삽입된 것이다. y의 DNA 2중 가닥 중 전사 주형 가닥의 염기 서열은 다음과 같다.

5'-GACTCACAAGCCATTGAACCAACTCGTTGCCATGC-3'

- z는 x의 전사 주형 가닥에서 1개의 사이토신(C)이 결실된 것이다. Z는 6종류의 아미노산으로 구성되고, 4번째 아미노산은 트립토판이다.
- 표는 유전 암호를 나타낸 것이다.

UUU UUC ^{페닐알라닌}	UCU	UAU UAC 타이로신	UGU UGC 시스테인
UUC "EE"	UCC 세린	UAC TOTAL	
UUA 로만	UCA ALE	UAA 종결 코돈	UGA 종결 코돈
UUG TE	UCG	UAG 종결 코돈	UGG 트립토판
CUU	CCU	CAU CAC ^{히스티딘}	CGU
CUC = A	CCC CCA 프롤린		CGC CGA 아르지닌
CUA ^{류신}	CCA ==	CAA CAG 글루타민	CGA OFFAIL
CUG	CCG	CAG 글투다인	CGG
AUU	ACU	AAU AAC ^{아스파라진}	AGU 세린
AUC 아이소류신	ACC ACA ^{트레오닌}	AAC	AGC ALE
AUA	ACA ENED	AAA AAG 라이신	AGA AGG 아르지닌
AUG 메싸이오닌	ACG	AAG	AGG OF A
GUU	GCU	GAU	GGU
GUC 발린	GCC GCA 알라닌	GAU GAC	GGC GGA 글라이신
GUA BE	GCA SCHOOL	GAA GAG 글루탐산	GGA 플라이션
GUG	GCG	GAG 골두담산	GGG

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 돌연변이 이외의 핵산 염기 서열 변화는 고려 하지 않는다.) [3점]

-<보 기>-

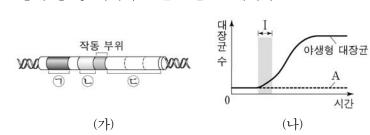
- ㄱ. 🖒은 (가)이다.
- ㄴ. @에는 아테닌(A)이 있다.
- C. X와 Z가 합성될 때 사용된 종결 코돈의 염기 서열은 같다.
- ① つ ② し

- 37, 5 4 4, 5 5 7, 6, 5
- 18. 그림은 지구의 대기 변화와 생물의 출현 과정을 나타낸 것이다. ①~ ©은 광합성 세균, 호기성 세균, 무산소 호흡 종속 영양 생물을 순서 없이 나타낸 것이다.

CO₂ 방출 ○ ○ ○ 항출 유기물 단계 → ¬의 출현 → □의 출현 → 육상 생물 출현

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

-----<보 기>---


- ㄱ. ⑦은 호기성 세균이다.
- 나. (나은 빛에너지를 화학 에너지로 전환하다.
- C. 효모는 ©에 속한다.

- 19. 다음은 동물 종 P의 서로 다른 두 집단 (가)와 (나)에서 꼬리털 색 유전에 대한 자료이다.
 - P의 꼬리털 색은 상염색체에 있는 갈색 꼬리털 대립 유전자와 흰색 꼬리털 대립 유전자에 의해 결정되며, 대립 유전자 사이의 우열 관계는 분명하다.
 - (가)와 (나)는 각각 하디-바인베르크 평형을 이루는 집단이고, 개체수는 서로 다르다.
 - \circ (가)에서 $\frac{2^{44}}{2^{44}}$ 꼬리털 대립 유전자 수 $=\frac{8}{7}$ 이다.
 - (가)에서 흰색 꼬리털을 갖는 개체수는 (나)에서 갈색 꼬리털을 갖는 개체수의 3배이다.
 - (가)와 (나)의 개체들을 모두 합쳐서 갈색 꼬리털을 갖는 개체의 비율을 구하면 $\frac{1}{2}$ 이다.

(나)에서 임의의 갈색 꼬리털을 갖는 암컷이 임의의 갈색 꼬리털을 갖는 수컷과 교배하여 자손(F1)을 낳을 때, 이 자손이 흰색 꼬리털을 가질 확률은? (단, (가)와 (나)에서 각각 암컷과 수컷의 개체수는 같다.) [3점]

- ① $\frac{4}{25}$ ② $\frac{1}{9}$ ③ $\frac{4}{49}$ ④ $\frac{1}{16}$ ⑤ $\frac{1}{25}$

20. 그림 (가)는 야생형 대장균의 젖당 오페론과 젖당 오페론을 조절 하는 조절 유전자를, (나)는 야생형 대장균과 돌연변이 대장균 A를 포도당은 없고 젖당이 있는 배지에서 각각 배양한 결과를 나타낸 것이다. (¬~(c)은 젖당 오페론의 구조 유전자, 젖당 오페론의 프로모터, 젖당 오페론을 조절하는 조절 유전자를 순서 없이 나타낸 것이며, A는 ¬과 □ 중 하나가 결실된 돌연변이이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 돌연변이 이외의 돌연변이는 고려하지 않으며, 야생형 대장균과 A의 배양 조건은 동일하다.)

--<보 기>---

- ㄱ. 젖당 분해 효소의 아미노산 서열은 ⋽에 암호화되어 있다.
- ∟. A는 ○이 결실된 돌연변이이다.
- C. 구간 I에서 야생형 대장균은 젖당 오페론을 조절하는 억제 단백질을 생성한다.
- ① ¬
- ② し ③ □
- 47, 4 5 4, 5
- * 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인